Florida Current surface temperature and salinity variability during the last millennium

Lund, D.C. and Curry, W. 2006; Paleoceanography 21: 10.1029/2005PA001218

Abstract

The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (∼1200–1850 A.D.), equivalent to a salinity increase of 0.8–1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (∼0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4–1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.